Synthesis of chiral oxazolidin-2-ones from N-alkoxycarbonyl amino epoxides: a computational study \dagger

F. Javier Casado-Bellver, ${ }^{a}$ M. Eugenia González-Rosende, ${ }^{* b}$ Amparo Asensio, ${ }^{a}$
J. Miquel Jordá-Gregori, ${ }^{a}$ Angeles Alvarez-Sorolla, ${ }^{a}$ José Sepúlveda-Arques,* ${ }^{b}$
Mario Orena ${ }^{c}$ and Roberta Galeazzi * ${ }^{c}$
${ }^{a}$ University of Valencia, Avda. Vicent Andrés Estelles sin, 46100 Burjassot, Valencia, Spain.
E-mail: jose.sepulveda@uv.es; Fax: + 3496 386493; Tel: +34 963864938
${ }^{b}$ Department of Chemistry, University Cardenal Herrera-CEU, Edificio Seminario s/n, 46133 Moncada, Valencia, Spain. E-mail: eugenia@uch.ceu.es; Fax: +34 96 1395272; Tel: +34 961369000
${ }^{\text {c }}$ Dipartimento di Scienze dei Materiali e della Terra, University of Ancona, Via Brecce Bianche, I-60131 Ancona, Italy. E-mail: roberta@popcsi.unian.it; Fax: + 3971 2204714; Tel: + 39712204707

Received (in Cambridge, UK) 17th April 2002, Accepted 30th May 2002
First published as an Advance Article on the web 24th June 2002
threo- N -Alkoxycarbonylamino epoxides $\mathbf{5 a - d}$, containing the oxazolidine moiety, were converted into trans-4,5-disubstituted-2-oxazolidin-2-ones $\mathbf{2}$ with total regio- and stereoselection by means of nucleophilic intramolecular attack of the carbamate moiety to the protonated oxirane ring. Theoretical calculations confirmed both the regioselection and the preference of the cyclocarbamation reaction $v s$. the intermolecular attack by the solvent, arising from different behaviour in comparison with the analogous iodonium ions.

Introduction

Oxazolidines having definite configuration are widely recognized as useful chiral auxiliaries ${ }^{1,2}$ and enantiomerically pure epoxides have been frequently used in stereocontrolled synthesis. ${ }^{3,4}$ However, both epoxide and oxazolidine moieties involved together in intramolecular processes are little reported in the literature. ${ }^{5}$ As a part of an ongoing research program aimed at the synthesis of biologically relevant hydroxy amino acids, ${ }^{6}$ starting from chiral epoxy oxazolidines 5, we report here a new, stereoselective approach to trans-4,5-disubstituted 2 -oxazolidinones 2 , which can be precursors of β, γ-dihydroxy-α-amino acids 1 (Scheme 1).

Results and discussion

First, alkenyl oxazolidines 3a-d were obtained starting from Garner's protected aldehydes $\mathbf{4 a}, \mathbf{b}^{7}$ by using standard

Scheme 1

[^0]procedures. ${ }^{8}$ Then, treatment of $\mathbf{3}$ with m-chloroperbenzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the corresponding threo $\mathbf{5 a - d}$ and erythro 6a-c, N-carbamoyl epoxides (Scheme 2). ${ }^{9}$ The reaction

Scheme 2 Reagents and conditions (and yields): i, for 3a,b: methyltriphenylphosphonium iodide, LiHMDS, $-78^{\circ} \mathrm{C}\left(\mathbf{a}, \mathrm{R}=t-\mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{H}\right.$, 38%; b, R = Bn, $\mathrm{R}^{\prime}=\mathrm{H}, 53 \%$); for 3c,d, ethyltriphenylphosphonium iodide, LiHMDS, $-78{ }^{\circ} \mathrm{C}\left(\mathbf{c}, \mathrm{R}=t-\mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{Me}, 58 \% ; \mathrm{d}, \mathrm{R}=\mathrm{Bn}\right.$, $\mathrm{R}^{\prime}=\mathrm{Me}, 73 \%$); ii, m-chloroperbenzoic acid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at reflux starting from 3a or 3b, rt starting from 3c or 3d, 48 h (a, 42%, d.r. 67 : 33 ; b, 63%, d.r. $63: 37$; c, 57%, d.r. $70: 30$; d, 77%, d.r. $100: 0$).
proceeded with moderate to high stereoselection, ${ }^{10}$ the threo diastereomer being always the major product, and pure isolated diastereomers were easily obtained by column chromatography. Moreover, when toluene- p-sulfonic acid was added to a solution of the epoxides $\mathbf{5 a - d}$ in dry methanol, oxazolidin-2-ones 2a,b were exclusively obtained whereas oxazin- 2 -ones arising from 6 -endo cyclisation were not observed. ${ }^{11}$ The trans-4,5-relationship in these compounds was assigned on the basis of the values of coupling constants between the protons H_{4} and H_{5} in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left(J_{4,5}=4.9 \mathrm{~Hz}\right) .{ }^{12}$

This regio- and stereoselective cyclocarbamation proceeds through an intramolecular nucleophilic attack of the carbonyl group on the $\mathrm{C}-\alpha$ of the protonated epoxide (Scheme 3).

Scheme 3 Reagents and conditions (and yields): i, toluene- p-sulfonic acid, methanol, $-20^{\circ} \mathrm{C}\left[\mathbf{2 a}\right.$ from $5 \mathrm{a}\left(\mathrm{R}=t-\mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{H}\right), 70 \% ; \mathbf{2 a}$ from $\mathbf{5 b}$ $\left(\mathrm{R}=\mathrm{Bn}, \mathrm{R}^{\prime}=\mathrm{H}\right), 62 \% ; \mathbf{2 b}$ from $\mathbf{5 c}\left(\mathrm{R}=t-\mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{Me}\right), 96 \% ; \mathbf{2 b}$ from $\left.\mathbf{5 d}\left(\mathrm{R}=\mathrm{Bn}, \mathrm{R}^{\prime}=\mathrm{Me}\right), 86 \%\right]$.

Although such participation of a carbamate in the intramolecular epoxide ring opening under acid conditions has been previously observed, ${ }^{3,11,13,14}$ to the best of our knowledge this is the first example of an intramolecular nucleophilic epoxide opening reaction starting from 4-oxiranyloxazolidines.

The good results obtained in the case of compounds 5a-d suggested that the epoxide erythro-6c might react in a similar manner. However, when $\mathbf{6 c}$ was treated under the same conditions, an intermolecular reaction with the methanol occurred leading to compound 7, exclusively (Scheme 4). Therefore, for

Scheme 4 Reagents, conditions and yields: i, toluene-p-sulfonic acid, methanol, $-20^{\circ} \mathrm{C}, 68 \%$.
obtaining deeper mechanistic information on the regioselection of the ring closure, theoretical calculations were performed. First, the geometry of both epoxides $\mathbf{5 c}$ and $\mathbf{6 c}$ was optimised and epoxide $5 \mathbf{c}$ turned out to be more stable than $\mathbf{6 c}$ by 0.6 kcal mol^{-1}, in good agreement with the observed d.r. ${ }^{15-17}$ Then, in order to explain the exclusive five-membered ring formation, $E_{\text {номо }}, E_{\text {LUмо }}$ and frontier electron density for significant carbon and oxygen atoms for both protonated epoxides \mathbf{A} and B (Fig. 1) were calculated at the RHF/6-31G* level. Thus, for A,

Fig. 1 Numbering system for cations A and B.
the 3D shapes for HOMO and LUMO were obtained ($E_{\text {номо }}=$ -0.51966 eV and $E_{\text {Lumo }}=-0.03773 \mathrm{eV}$) and the results show that HOMO lies mainly on carbonylic $\mathrm{O}-10\left[f_{\mathrm{r}}^{\mathrm{E}}(\mathrm{HOMO})\right.$ $0.110]$, whereas the difference between the LUMOs at C-8
and C-11 is small $\left[f_{\mathrm{r}}^{\mathrm{N}}\right.$ (LUMO), C-8, 0.423 , and C-11, 0.458 , respectively]. ${ }^{18}$ In analogy, the 3D shapes for HOMO and LUMO were also obtained for B, $\left(E_{\text {номо }}=-0.51204 \mathrm{eV}\right.$ and $E_{\mathrm{LUMO}}=-0.01854 \mathrm{eV}$) and the result was that the HOMO lies mainly on carbonylic $\mathrm{O}-11\left[f_{\mathrm{r}}^{\mathrm{E}}(\mathrm{HOMO}) 0.109\right]$, whereas the difference between the LUMOs at C-8 and C-11 is still small [$f_{\mathrm{r}}^{\mathrm{N}}(\mathrm{LUMO}), \mathrm{C}-8,0.240$, and $\mathrm{C}-11,0.282$, respectively].
The small difference between C-8 and C-11 does not explain the observed regioselection, and other factors must be involved, unlike the intermediate iodonium cations we have already considered. ${ }^{6}$ Accordingly, two possible reaction pathways proceeding via either five-exo or six-endo mode were investigated at the AM1 level. ${ }^{15-17}$ For the formation of a fivemembered ring the energies of both \mathbf{A} and $\mathbf{2 b}$ were calculated, and the corresponding transition state TS-1 was localised (Figs. 2 and 3). Following the same procedure, but for a

Fig. 2 Regioselective formation of $\mathbf{2 b}$.

Fig. 3 Energies for pathways leading to either $\mathbf{2 b}$ or compound \mathbf{C} (fivevs. six-membered ring formation).
pathway leading to a six-membered ring, the energies of both \mathbf{A} and \mathbf{C} were calculated and TS-2 was localised. The results show that the formation of a five-membered ring is strongly favoured owing to a lower activation energy for the pathway $\mathbf{A} \rightarrow$ TS-1 ($10.45 \mathrm{kcal} \mathrm{mol}^{-1}$ vs. $20.74 \mathrm{kcal} \mathrm{mol}^{-1}$). In fact, in order to give \mathbf{C}, the cation \mathbf{A} must reach an active conformation which is about $20 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than the active conformation leading to $\mathbf{2 b}$, so this is the rate determining step of the process.
Subsequently, in order to explain the different behaviour of the intermediate cations \mathbf{A} and \mathbf{B}, the structures of both \mathbf{A} and the transition state TS-1 were optimised at the RHF/6-31G* level and their energies calculated at the B3LYP/6-31G*//RHF/ $6-31 \mathrm{G}^{*}$ level. ${ }^{19-23}$ The activation energy was obtained and the result was that TS-1 has exactly one imaginary vibrational frequency (Figs. 4, 5 and 6).

Moreover, the structures of both \mathbf{B} and the transition state TS-3, leading to the five-membered compound \mathbf{D}, were optimised at the RHF/6-31G* level and the energy was obtained at the B3LYP/6-31G*//RHF/6-31G* level. At both levels a high activation energy was observed for the pathway \mathbf{A} \rightarrow TS-1, with respect to the very low activation energy for the pathway $\mathbf{B} \rightarrow$ TS-3. However, a strong difference in energy was

Fig. 4 Comparison between the behaviour of cations A and B.

Fig. 5 Energies for pathways $\mathbf{A} \longrightarrow$ TS-1 and $\mathbf{B} \longrightarrow$ TS- 3 calculated at the RHF/6-31G* level [A (-859.9310337 au); TS-1 (-859.89401 au); В (-859.908872 au); TS-3 ($-859.89401 \mathrm{au})$].

Fig. 6 Energies for pathways $\mathbf{A} \longrightarrow$ TS-1 and $\mathbf{B} \longrightarrow$ TS-3 calculated at the B3LYP/6-31G*//RHF/6-31G* level [A (-865.241716 au); TS-1 ($-865.189717 \mathrm{au})$; В (-865.1996634 au); TS-3 $(-865.196932 \mathrm{au})$].
found for \mathbf{A} with respect to \mathbf{B}, so it seems reasonable that \mathbf{A} can give the five-membered ring through TS-1, whereas \mathbf{B} does not form, the reaction proceeding through a different pathway involving an external nucleophile (MeOH) to give the acyclic compound 7 (Fig. 6).

Conclusions

In summary, treatment of threo amino epoxides 5a-d with catalytic toluene- p-sulfonic acid in anhydrous methanol led to a highly regio- and stereoselective intramolecular epoxideopening reaction involving the N-Boc and N-Cbz neighbouring groups, and we succeeded in preparing the corresponding 4,5-trans-disubstituted oxazolidin-2-ones $2 \mathbf{a}, \mathbf{b}$ via a cyclisation
proceeding in a 5-exo-tet mode. In addition, theoretical calculations confirmed the preference for the intramolecular vs. intermolecular nucleophilic attack in threo isomers 5a-d. ${ }^{24}$ Applications of this cyclisation strategy to the asymmetric synthesis of non-proteinogenic α-amino- β-hydroxy acids are currently under investigation in our group and will be reported in due course.

Experimental

General

All reactions were carried out under argon by using standard techniques. Mps. were determined with a Kofler hot-stage apparatus and are uncorrected. Optical rotations were measured at $25^{\circ} \mathrm{C}$ on a Perkin-Elmer 241 polarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, unless specified otherwise, on a Bruker AC-250 and an AC-300 spectrometer using TMS as internal reference and coupling constants are given in Hz. All assignments were determined via DEPT and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY techniques. Infrared spectra were recorded on a Perkin-Elmer FT-IR instrument. High-resolution mass spectra were obtained on a VG Autospec, TRIO 1000 (Fisons) instrument. The ionization mode used in obtaining the mass spectra was electron impact (EI), chemical ionization (CI) at 70 eV or fast atom bombardment (FAB). Flash chromatography was performed using silica gel (Merck 60, 70-230 mesh). Compounds $3 \mathbf{a}-\mathbf{d}$ were prepared according to the literature method. ${ }^{8}$

Epoxidation of allylic carbamates 3: general procedure

To a solution of the appropriate allylic carbamate 3 (2.2 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, m-chloroperbenzoic acid (70 \% in weight; $1.48 \mathrm{~g}, 6.6 \mathrm{mmol}$) was added at $-20^{\circ} \mathrm{C}$. After being stirred at rt for $48 \mathrm{~h}(\mathbf{3 c}$ and $\mathbf{3 d}$) or at reflux temperature ($\mathbf{3 a}$ and $\mathbf{3 b}$), the reaction mixture was washed with $10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ $(3 \times 70 \mathrm{ml}), 5 \% \mathrm{NaHCO}_{3}(3 \times 70 \mathrm{ml})$ and brine. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{ml})$, the organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. The residue was purified by flash chromatography (hexane-ethyl acetate, gradient elution $95: 5$ to $20: 80$) to give pure isolated products 5 and $6 .{ }^{25}$
threo-(4S,2'R)-N-tert-Butoxycarbonyl-2,2-dimethyl-4-
(oxiran-2'-yl)oxazolidine 5a. Yield 28\%. Oil. $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ $1700,1260,1211 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.44\left(3 \mathrm{H}_{\alpha}+3 \mathrm{H}_{\beta}+9 \mathrm{H}_{\alpha}+9 \mathrm{H}_{\beta}, \mathrm{s}\right)$, $1.56(3 \mathrm{H}, \mathrm{s})_{\beta}, 1.61(3 \mathrm{H}, \mathrm{s})_{\alpha}, 2.70-2.86\left(2 \mathrm{H}_{\alpha}+2 \mathrm{H}_{\beta}, \mathrm{m}\right), 2.98\left(1 \mathrm{H}_{\alpha}\right.$ $\left.+1 \mathrm{H}_{\beta}, \mathrm{s}\right), 3.38\left(1 \mathrm{H}_{\alpha \text { or } \beta}, \mathrm{m}\right), 3.53\left(1 \mathrm{H}_{\alpha \text { or } \beta}, \mathrm{m}\right), 4.0\left(2 \mathrm{H}_{\alpha}+\right.$ $\left.2 \mathrm{H}_{\beta}, \mathrm{m}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 23.1\left(\mathrm{CH}_{3}\right)_{\alpha}, 24.3\left(\mathrm{CH}_{3}\right)_{\beta}, 26.7\left(\mathrm{CH}_{3}\right)_{\alpha}, 27.5$ $\left(\mathrm{CH}_{3}\right)_{\beta}, 28.4\left(3 \mathrm{CH}_{3}\right)_{\alpha+\beta}, 48.3\left(\mathrm{CH}_{2}\right)_{\alpha}, 48.4\left(\mathrm{CH}_{2}\right)_{\beta}, 52.0(\mathrm{CHN})_{\beta}$, $52.3(\mathrm{CHN})_{\alpha}, 59.0(\mathrm{CH})_{\alpha}, 59.3(\mathrm{CH})_{\beta}, 65.5\left(\mathrm{CH}_{2}\right)_{\beta}, 66.1\left(\mathrm{CH}_{2}\right)_{\alpha}$, $80.2\left(\mathrm{CH}_{2}\right)_{\alpha}, 80.5\left(\mathrm{CH}_{2}\right)_{\beta}, 93.9(\mathrm{C})_{\beta}, 94.4(\mathrm{C})_{\alpha}, 151.8(\mathrm{C})_{\alpha+\beta} ;[\alpha]_{\mathrm{D}}$ $+10.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ EI-HRMS $\left(\mathrm{M}^{+}\right)=243.1465$. Calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4} 243.1470$.
erythro-(4S,2'S)-N-tert-Butoxycarbonyl-2,2-dimethyl-4-
(oxiran-2'-yl)oxazolidine 6a. Yield 14%. Oil. $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1696, 1260; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.41\left(9 \mathrm{H}_{\alpha}+9 \mathrm{H}_{\beta}+6 \mathrm{H}_{\alpha}+6 \mathrm{H}_{\beta}, \mathrm{m}\right)$, $2.56,\left(1 \mathrm{H}_{\alpha}+1 \mathrm{H}_{\beta}, \mathrm{s}\right), 2.67\left(1 \mathrm{H}_{\alpha}+1 \mathrm{H}_{\beta}\right.$, dd, $\left.J 4.4,4.3\right), 3.12\left(1 \mathrm{H}_{\alpha}\right.$ $\left.+1 \mathrm{H}_{\beta}, \mathrm{m}\right), 3.6-3.8\left(2 \mathrm{H}_{\alpha}+2 \mathrm{H}_{\beta}, \mathrm{m}\right), 4.08(1 \mathrm{H} \mathrm{s})_{\alpha \text { or } \beta}, 4.22$ $(1 \mathrm{H}, \mathrm{s})_{\alpha \text { or } \beta} ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 23.1\left(\mathrm{CH}_{3}\right)_{\alpha}, 24.3\left(\mathrm{CH}_{3}\right)_{\beta}, 26.4\left(\mathrm{CH}_{3}\right)_{\alpha}$, $27.0\left(\mathrm{CH}_{3}\right)_{\beta}, 28.3\left(3 \mathrm{CH}_{3}\right)_{\alpha+\beta}, 44.1\left(\mathrm{CH}_{2}\right)_{\alpha+\beta}, 51.0(\mathrm{CHN})_{\alpha+\beta}$, $56.3(\mathrm{CH})_{\alpha}+{ }_{\beta}, 62.9\left(\mathrm{CH}_{2}\right)_{\alpha}, 63.1(\mathrm{CH})_{\beta}, 80.2(\mathrm{C})_{\alpha}, 80.6\left(\mathrm{C}_{\beta}\right)$, $93.8(\mathrm{C})_{\beta}, 94.2(\mathrm{C})_{\alpha}, 151.7(\mathrm{C})_{\alpha}, 152.5(\mathrm{C})_{\beta} ;[a]_{\mathrm{D}}-45.2(c=1.1$, $\left.\mathrm{CHCl}_{3}\right)$; FAB-HRMS $(\mathrm{M}+1)=244.1545$. Calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{4} 244.1548$
threo-(4S, $2^{\prime} R$)- N-Benzyloxycarbonyl-2,2-dimethyl-4-(oxiran-$\mathbf{2}^{\prime}$-yl)oxazolidine 5b. Yield: 40%. Oil. $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1692$, $1257 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.45(3 \mathrm{H}, \mathrm{s})_{\beta}, 1.53(3 \mathrm{H}, \mathrm{s})_{\alpha}, 1.58(3 \mathrm{H}, \mathrm{s})_{\beta}$, $1.66(3 \mathrm{H}, \mathrm{s})_{\alpha}, 2.44(1 \mathrm{H}, \mathrm{dd}, J 4.4,2.5)_{\alpha}, 2.65(1 \mathrm{H}, \mathrm{t}, J 4.4)_{\alpha}, 2.8-$
$3.1\left(3 \mathrm{H}_{\beta}+1 \mathrm{H}_{\alpha}, \mathrm{m}\right), 3.38(1 \mathrm{H}, \mathrm{m})_{\alpha}, 3.48(1 \mathrm{H}, \mathrm{m})_{\beta}, 4.0-4.1\left(2 \mathrm{H}_{\alpha}\right.$ $\left.+2 \mathrm{H}_{\beta}, \mathrm{m}\right), 5.0-5.2\left(2 \mathrm{H}_{a}+2 \mathrm{H}_{\beta}, \mathrm{m}\right), 7.3\left(5 \mathrm{H}_{a}+5 \mathrm{H}_{\beta}, \mathrm{s}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 23.0\left(\mathrm{CH}_{3}\right)_{\alpha}, 24.3\left(\mathrm{CH}_{3}\right)_{\beta}, 26.5\left(\mathrm{CH}_{3}\right)_{\alpha}, 27.4\left(\mathrm{CH}_{3}\right)_{\beta}$, $48.2\left(\mathrm{CH}_{2}\right)_{\alpha+\beta}, 51.7(\mathrm{CHN})_{\beta}, 52.0(\mathrm{CHN})_{\alpha}, 58.9(\mathrm{CH})_{\alpha}, 59.7$ $(\mathrm{CH})_{\beta}, 65.6\left(\mathrm{CH}_{2}\right)_{\beta}, 66.2\left(\mathrm{CH}_{2}\right)_{\alpha}, 67.0\left(\mathrm{CH}_{2}\right)_{\alpha}, 67.3\left(\mathrm{CH}_{2}\right)_{\beta}, 94.6$ $(\mathrm{C})_{\alpha+\beta}, 128.0\left(2 \mathrm{CH}_{\mathrm{ar}}\right)_{\alpha+\beta}, 128.3\left(2 \mathrm{CH}_{\mathrm{ar}}\right)_{\alpha+\beta}, 128.5\left(\mathrm{CH}_{\mathrm{ar}}\right)_{\alpha+\beta}$, $135.5\left(\mathrm{C}_{\mathrm{ar}}\right)_{\alpha+\beta}, 152.2(\mathrm{C})_{\alpha+\beta} .[a]_{\mathrm{D}}+0.63\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ EI-HRMS $\left(\mathrm{M}^{+}\right)=$277.1323. Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}$ 277.1314.
erythro-(4S,2'S)-N-Benzyloxycarbonyl-2,2-dimethyl-4-
(oxiran-2'-yl)oxazolidine 6b. Yield: 23%. Oil. $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1705,1261,1211 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.38(3 \mathrm{H}, \mathrm{s})_{\beta}, 1.45(3 \mathrm{H}, \mathrm{s})_{\alpha}$, $1.53(3 \mathrm{H}, \mathrm{s})_{\alpha}, 1.61(3 \mathrm{H}, \mathrm{s})_{\beta}, 2.5(2 \mathrm{H}, \mathrm{dd}, J 4.7,2.5)_{\alpha}+\beta, 2.63$ $(2 \mathrm{H}, \mathrm{m})_{\alpha+\beta}, 3.1(1 \mathrm{H}, \mathrm{m})_{\alpha}, 3.2(1 \mathrm{H}, \mathrm{m})_{\beta}, 3.65-3.83\left(2 \mathrm{H}_{\alpha}+2 \mathrm{H}_{\beta}\right.$, $\mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{m})_{\alpha}, 4.28(1 \mathrm{H}, \mathrm{m})_{\beta}, 5.07(4 \mathrm{H}, \mathrm{m})_{\alpha+\beta}, 7.03(10 \mathrm{H}$, $\mathrm{m})_{\alpha+\beta} ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 23.0\left(\mathrm{CH}_{3}\right)_{\alpha}, 24.3\left(\mathrm{CH}_{3}\right)_{\beta}, 26.8\left(\mathrm{CH}_{3}\right)_{\alpha}, 27.0$ $\left(\mathrm{CH}_{3}\right)_{\beta}, 44.1\left(\mathrm{CH}_{2}\right)_{\alpha+\beta}, 50.8(\mathrm{CHN})_{\alpha+\beta}, 56.1(\mathrm{CH})_{\alpha}, 56.9$ $(\mathrm{CH})_{\beta}, 63.1\left(\mathrm{OCH}_{2}\right)_{\alpha+\beta}, 66.8\left(\mathrm{CH}_{2}\right)_{\beta}, 67.4\left(\mathrm{CH}_{2}\right)_{\alpha}, 94.5(\mathrm{C})_{\alpha+\beta}$, $128.0\left(2 \mathrm{CH}_{\mathrm{ar}}\right)_{\alpha+\beta}, 128.3\left(2 \mathrm{CH}_{\mathrm{ar}}\right)_{\alpha+\beta}, 128.5\left(\mathrm{CH}_{\mathrm{ar}}\right)_{\alpha+\beta}, 136.0$ $\left(\mathrm{C}_{\mathrm{ar}}\right)_{\alpha+\beta}, 152.4(\mathrm{C})_{\alpha+\beta} ;[\alpha]_{\mathrm{D}}-30.7\left(c=1.0, \mathrm{CHCl}_{3}\right)$; EI-HRMS $\left(\mathrm{M}^{+}\right)=277.1313$. Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} 277.1314$.

threo-(4S, $\left.1^{\prime} R, 2^{\prime} S\right)$-N-tert-Butoxycarbonyl-2,2-dimethyl-4-

 ($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-epoxypropan- $\mathbf{1}^{\prime}$-yl)oxazolidine $\mathbf{5 c}$. Yield: 40%. Oil. $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1695,1256,1173 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{d}$, $J 4.0)_{\beta}, 1.37(3 \mathrm{H}, \mathrm{d}, J 4.0)_{\alpha}, 1.42\left(9 \mathrm{H}_{\beta}+9 \mathrm{H}_{\alpha}+3 \mathrm{H}_{\beta}+3 \mathrm{H}_{\alpha}, \mathrm{m}\right)$, $1.54\left(3 \mathrm{H}_{\beta}+3 \mathrm{H}_{\alpha}, \mathrm{m}\right), 2.9-2.93\left(1 \mathrm{H}_{\alpha}+1 \mathrm{H}_{\beta}, \mathrm{m}\right), 3.12-3.16\left(1 \mathrm{H}_{\alpha}\right.$ $\left.+1 \mathrm{H}_{\beta}, \mathrm{m}\right), 3.55-3.65\left(1 \mathrm{H}_{\alpha}+1 \mathrm{H}_{\beta}, \mathrm{m}\right), 3.89-3.95\left(1 \mathrm{H}_{\alpha}+1 \mathrm{H}_{\beta}\right.$, dd, $J 9.0,6.0), 4.02-4.06\left(1 \mathrm{H}_{\alpha}+1 \mathrm{H}_{\beta}\right.$, dd, $\left.J 9.0,2.0\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $13.8\left(\mathrm{CH}_{3}\right)_{\alpha}, 16.0\left(\mathrm{CH}_{3}\right)_{\beta}, 23.6\left(\mathrm{CH}_{3}\right)_{\beta}, 24.5\left(\mathrm{CH}_{3}\right)_{\alpha}, 26.3\left(\mathrm{CH}_{3}\right)_{\beta}$, $27.5\left(\mathrm{CH}_{3}\right)_{\alpha}, 28.3\left(3 \mathrm{CH}_{3}\right)_{\alpha+\beta}, 53.0(\mathrm{CHN})_{\beta}, 54.0(\mathrm{CHN})_{\alpha}, 54.9$ $(\mathrm{CH})_{\beta}, 57.6(\mathrm{CH})_{\alpha}, 58.3(\mathrm{CH})_{\beta}, 66.0\left(\mathrm{CH}_{2}\right)_{\alpha}, 66.3\left(\mathrm{CH}_{2}\right)_{\beta}, 80.2$ $(\mathrm{C})_{\alpha+\beta}, 93.9(\mathrm{C})_{\alpha}, 94.9(\mathrm{C})_{\beta}, 152.2(\mathrm{C})_{\alpha+\beta} ;[a]_{\mathrm{D}}+20.5(c=4.9$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). FAB-HRMS $\left(\mathrm{M}^{+}\right)=$257.1610. Calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}$ 257.1627.erythro-(4S,1'S,2'R)-N-tert-Butoxycarbonyl-2,2-dimethyl-4($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-epoxypropan-1'-yl)oxazolidine $\mathbf{6 c}$. Yield 17%. Oil. $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1698,1253,1170 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{d}, J 4.8)$, $1.43(9 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 2.93-2.96(2 \mathrm{H}, \mathrm{m})$, $3.75-3.8(2 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{dd}, J 9.2,1.9) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.8$ $\left(\mathrm{CH}_{3}\right)_{\alpha+\beta}, 23.6\left(\mathrm{CH}_{3}\right)_{\alpha}, 24.5\left(\mathrm{CH}_{3}\right)_{\beta}, 26.4\left(\mathrm{CH}_{3}\right)_{\alpha}, 27.5\left(\mathrm{CH}_{3}\right)_{\beta}$, $28.3\left(3 \mathrm{CH}_{3}\right)_{\alpha+\beta}, 51.0(\mathrm{CH})_{\alpha+\beta}, 56.8(\mathrm{CH})_{\alpha+\beta}, 59.0(\mathrm{CHN})_{\alpha+\beta}$, $65.7\left(\mathrm{CH}_{2}\right)_{\alpha+\beta}, 80.1(\mathrm{C})_{\alpha+\beta}, 94.1(\mathrm{C})_{\alpha+\beta}, 152.2(\mathrm{C})_{\alpha+\beta} ;[a]_{\mathrm{D}}$ $+13.2\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. EI-HRMS $\left(\mathrm{M}^{+}\right)=257.1637$. Calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}$ 257.1627.
threo-(4S, $1^{\prime} R, 2^{\prime} S$)- N-Benzyloxycarbonyl-2,2-dimethyl-4($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-epoxypropan- $\mathbf{1}^{\prime}$-yl)oxazolidine 5d. Yield: 77%. Oil. $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1705,1254,1216 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, \mathrm{d}$, $J 4.8)_{\alpha}, 1.45(6 \mathrm{H}, \mathrm{m})_{\beta}, 1.53(3 \mathrm{H}, \mathrm{s})_{\alpha}, 1.58(3 \mathrm{H}, \mathrm{s})_{\alpha}, 1.66(3 \mathrm{H}, \mathrm{s})_{\beta}$, $2.90\left(2 \mathrm{H}_{\alpha}+1 \mathrm{H}_{\beta}, \mathrm{s}\right), 3.20(1 \mathrm{H}, \mathrm{m})_{\beta}, 3.62(1 \mathrm{H}, \mathrm{m})_{\alpha}, 3.75(1 \mathrm{H}, \mathrm{m})_{\beta}$, $4.0-4.1\left(2 \mathrm{H}_{\alpha}+2 \mathrm{H}_{\beta}, \mathrm{m},\right), 5.01\left(2 \mathrm{H}_{\alpha}+2 \mathrm{H}_{\beta}, \mathrm{s}\right), 7.32\left(5 \mathrm{H}_{\alpha}+5 \mathrm{H}_{\beta}\right.$, s); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.2\left(\mathrm{CH}_{3}\right)_{\alpha}, 13.7\left(\mathrm{CH}_{3}\right)_{\beta}, 23.4\left(\mathrm{CH}_{3}\right)_{\alpha}, 24.6$ $\left(\mathrm{CH}_{3}\right)_{\beta}, 26.3\left(\mathrm{CH}_{3}\right)_{\alpha}, 27.4\left(\mathrm{CH}_{3}\right)_{\beta}, 53.4(\mathrm{CHN})_{\alpha}, 54.8(\mathrm{CHN})_{\beta}$, $54.9(\mathrm{CH})_{\alpha}, 55.0(\mathrm{CH})_{\beta}, 57.3(\mathrm{CH})_{\beta}, 57.6(\mathrm{CH})_{\alpha}, 66.2\left(\mathrm{CH}_{2}\right)_{\beta}$, $66.6\left(\mathrm{CH}_{2}\right)_{\alpha}, 67.0(\mathrm{CH})_{\alpha}, 67.30(\mathrm{CH})_{\beta}, 94.5\left(\mathrm{C}_{\beta}\right), 95.0\left(\mathrm{C}_{\alpha}\right)$, $128.0\left(\mathrm{CH}_{\mathrm{ar}}\right)_{\alpha}+\beta, 128.3\left(2 \mathrm{CH}_{\mathrm{ar}}\right)_{\alpha}+\beta, 128.5\left(2 \mathrm{CH}_{\mathrm{ar}}\right)_{\alpha}+\beta$, $136.1\left(\mathrm{C}_{\mathrm{ar}}\right)_{\alpha+\beta}, 152.5(\mathrm{C})_{\alpha+\beta} ;[a]_{\mathrm{D}}+22.3\left(c=1.85, \mathrm{CHCl}_{3}\right) ;$ EI-HRMS $\left(\mathrm{M}^{+}\right)=$291.1463. Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$ 291.1470.

Opening of epoxides 5a-d: general procedure

To a solution of the epoxide $\mathbf{5 a - d}(1.92 \mathrm{mmol})$ in dry methanol (20 ml) toluene- p-sulfonic acid ($0.073 \mathrm{~g}, 0.2$ equiv.) was added at $-20^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 h and then triethylamine was added in order to remove the acid. After evaporation of the solvent under reduced pressure, the residue was purified
by flash chromatography using gradient elution (hexane-ethyl acetate, $95: 5$ to $0: 100$, followed by ethyl acetate-methanol, $90: 10$) to give pure compounds $\mathbf{2 a}$ and $\mathbf{2 b}$.

trans-(4S,5R)-4,5-Bis(hydroxymethyl)-1,3-oxazolidin-2-one

2a. Yield: 70\% from 5a and 62% from 5b. White solid. Mp 134$137{ }^{\circ} \mathrm{C} . v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3379,1738 ; \delta_{\mathrm{H}}\left(\right.$ DMSO- $\left.d_{6}\right) 3.4-3.6$ $(6 \mathrm{H}, \mathrm{m}), 4.32(1 \mathrm{H}, \mathrm{m}), 5.1(1 \mathrm{H}, \mathrm{OH}, \mathrm{t}, J 5.0), 5.2(1 \mathrm{H}, \mathrm{OH}, \mathrm{t}$, $J 5.0) ; \delta_{\mathrm{C}}\left(\right.$ DMSO- $\left.d_{6}\right) 55.6(\mathrm{CHN}), 62.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 63.2$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 79.4(\mathrm{CHO}), 159.7(\mathrm{C}) .[a]_{\mathrm{D}}-40.1\left(c=1, \mathrm{CHCl}_{3}\right)$. EI-HRMS $\left(\mathrm{MH}^{+}\right)=148.0615$. Calculated for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{4}$ 148.0609. Found: C. $40.78 ; \mathrm{H}, 6.14 ; \mathrm{N}, 9.55 . \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4}$ requires C, 40.82; H, 6.17; N, 9.52\%.
trans-(4S,5R,1'S)-5-(1'-Hydroxyethyl)-4-hydroxymethyl-1,3-oxazolidin-2-one 2b. Yield: 96% from $\mathbf{5 c}$ and 86% from 5d. White solid. $\mathrm{Mp} 125-127^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3415,1742$; $\delta_{\mathrm{H}}\left(\right.$ DMSO- $\left.d_{6}-\mathrm{D}_{2} \mathrm{O}\right) 1.17(3 \mathrm{H}, \mathrm{d}, J 6.5), 3.36(2 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}$, $\left.\mathrm{H}_{4}, \mathrm{~m}\right), 3.63(1 \mathrm{H}, \mathrm{qd}, J 6.5,3.9), 4.07\left(1 \mathrm{H}, \mathrm{H}_{5}, \mathrm{dd}, J 4.9,3.9\right)$; $\delta_{\mathrm{C}}\left(\right.$ DMSO-d $\left.d_{6}\right) 18.4\left(\mathrm{CH}_{3}\right), 54.7(\mathrm{CHN}), 63.1\left(\mathrm{CH}_{2}\right), 66.4$ $(\mathrm{CHOH}), 81.0(\mathrm{CHO}), 158.6(\mathrm{C}) .[a]_{\mathrm{D}}-43.3(c=1.1, \mathrm{MeOH})$. EI-HRMS $\left(\mathrm{MH}^{+}\right)=162.0769$. Calculated for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{4}$ 162.0766. Found: C, 44.67 ; H. 6.92; N, 8.67. $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{4}$ requires C, 44.72; H, 6.88; N, 8.69\%.

(2S,3R,4R)-2-tert-Butoxycarbonylamino-4-methoxypentane-1,3-diol 7

To a solution of the epoxide $\mathbf{6 c}(1.92 \mathrm{mmol})$ in dry methanol $(20 \mathrm{ml})$ was added toluene- p-sulfonic acid $(0.073 \mathrm{~g}, 0.2$ equiv.), at $-20^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 h and then the solution was neutralised with triethylamine. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography using gradient elution (hexane-ethyl acetate, $95: 5$ to $0: 100$, followed by ethyl acetate-methanol, 90 : 10) to give pure 7. Yield: 68%. Oil. $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3421,1692$, $1510,1392,1367,1250,1170 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.07(3 \mathrm{H}, \mathrm{d}, J 5.8)$, $1.34(9 \mathrm{H}, \mathrm{s}), 3.17(1 \mathrm{H}, \mathrm{m}), 3.28(3 \mathrm{H}, \mathrm{s}), 3.57(6 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}$, d, J 8.4); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.4\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 51.5(\mathrm{CHN}), 56.3$ $\left(\mathrm{OCH}_{3}\right), 63.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 74.8(\mathrm{CH}), 77.8(\mathrm{CH}), 79.4(\mathrm{C}), 156.1$ (C). $[a]_{\mathrm{D}}-19.3(c=0.75, \mathrm{MeOH})$. EI-HRMS $\left(\mathrm{M}^{+}+1\right)=$ 250.1648. Calculated for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{5} 250.1654$.

Computational methods

A detailed conformational analysis was performed on each compound at the semiempirical level (AM1) ${ }^{15}$ and using the stochastic method Monte Carlo ${ }^{16}$ for the conformational space scan. All the geometries were then optimized ab initio at the RHF/6-31G* level and then a single point calculation on these optimised structures was performed at the B3LYP/6-31G* level of theory to include the electronic correlation.

Semiempirical calculations were performed using the AM1 Hamiltonian ${ }^{15}$ within the framework of HyperChem 5.2. ${ }^{17}$ All the torsional degrees of freedom were included in the conformational search. The torsional space of each molecule was randomly varied with the usage-directed Monte Carlo conformational search. ${ }^{16}$ Duplicate conformations and those with an energy exceeding the global minimum by $5 \mathrm{kcal} \mathrm{mol}^{-1}$ were discarded.
$A b$ initio molecular orbitals and DFT calculations were carried out using the GAUSSIAN 94 program package. ${ }^{18}$ For DFT calculations the hybrid functional B3LYP which contains gradient corrections for both exchange and correlation was chosen. The geometry of the reactants, products and transition structures was fully optimized at the RHF/6-31G* theory level. The calculated stationary points (local minima and saddle points) were characterized by harmonic vibrational frequency calculations at both HF/6-31G* and B3LYP/6-31G* levels. ${ }^{19-22}$ Transitions structures were characterized by a single imaginary frequency whereas reactant and products had none.

Significant conformational parameters for transition structures

 TS-1 and TS-2 (optimised at the AM1 level)TS-1. Torsional angles: ($\mathrm{N}-3$) $-(\mathrm{C}-2)-(\mathrm{C}-8)-(\mathrm{C}-11)=-34.30^{\circ}$; (C-2)-(N-3)-(C-9)-(O-10) $=0.13^{\circ}$; (C-9)-(N-3)-(C-2)-(C-8) $=$ -36.33°.

Distances between the reaction centres: $d_{\mathrm{O} 10-\mathrm{C} 8}=2.58 \AA$; $d_{\mathrm{O}^{+}-\mathrm{C8}}=2.42 \AA$.

Torsional angles related to conformations of the five membered ring: $(\mathrm{C}-4)-(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)=-22.10^{\circ}$; $(\mathrm{N}-3)-$ (C-4)-(O-5)-(C-1) $=20.0^{\circ} ;(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)-(\mathrm{N}-3)=16.28^{\circ}$; $(\mathrm{C}-1)-(\mathrm{C}-2)-(\mathrm{N}-3)-(\mathrm{C}-4)=-4.49^{\circ}$.

TS-2. Torsional angles: $(\mathrm{N}-3)-(\mathrm{C}-2)-(\mathrm{C}-8)-(\mathrm{C}-11)=7.78^{\circ}$; (C-2)-(N-3)-(C-9)-(O-10) $=27.73^{\circ} ;(\mathrm{C}-9)-(\mathrm{N}-3)-(\mathrm{C}-2)-(\mathrm{C}-8)=$ -77.62°.
Distances between the reaction centres: $d_{\mathrm{O} 10-\mathrm{C} 11}=2.96 \AA$; $d_{\mathrm{O}^{+}-\mathrm{Cl1}}=2.94 \AA$.

Torsional angles related to conformations of the five membered ring: $(\mathrm{C}-4)-(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)=-22.69^{\circ}$; $(\mathrm{N}-3)-$ (C-4)-(O-5)-(C-1) $=26.64^{\circ} ;(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)-(\mathrm{N}-3)=9.28^{\circ}$; (C-1) $-(\mathrm{C}-2)-(\mathrm{N}-3)-(\mathrm{C}-4)=6.99^{\circ}$.

Significant conformational parameters for transition structures TS-1 and TS-3 (optimised at RHF/6-31G* level)

TS-1. Torsional angles: ($\mathrm{N}-3$) $-(\mathrm{C}-2)-(\mathrm{C}-8)-(\mathrm{C}-11)=-21.42^{\circ}$; (C-2)-(N-3)-(C-9)-(O-10) $=7.19^{\circ}$; (C-9)-(N-3)-(C-2)-(C-8) $=$ -56.22°.

Distances between the reaction centres: $d_{\mathrm{O} 10-\mathrm{C} 8}=2.67 \AA$; $d_{\mathrm{O}^{+-C 8}}=2.43 \AA$.
Torsional angles related to conformations of the five membered ring: ($\mathrm{C}-4)-(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)=-36.04^{\circ}$; $(\mathrm{N}-3)-$ (C-4)-(O-5)-(C-1) $=31.48^{\circ} ;(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)-(\mathrm{N}-3)=24.36^{\circ}$; $(\mathrm{C}-1)-(\mathrm{C}-2)-(\mathrm{N}-3)-(\mathrm{C}-4)=-6.15^{\circ}$.

TS-3. Torsional angles: $(\mathrm{N}-3)-(\mathrm{C}-2)-(\mathrm{C}-8)-(\mathrm{C}-11)=121.26^{\circ}$; (C-2)-(N-3)-(C-9)-(O-10) $=16.20^{\circ}$; (C-9)-(N-3)-(C-2)-(C-8) $=$ -73.58°.

Distances between the reaction centres: $d_{\mathrm{O} 10-\mathrm{C} 8}=2.83 \AA$; $d_{\mathrm{O}^{+} \mathrm{C} 8}=1.60 \AA$.

Torsional angles related to conformations of the five membered ring: $(\mathrm{C}-4)-(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)=-26.90^{\circ}$; $(\mathrm{N}-3)-$ (C-4)-(O-5)-(C-1) $=28.95^{\circ} ;(\mathrm{O}-5)-(\mathrm{C}-1)-(\mathrm{C}-2)-(\mathrm{N}-3)=12.17^{\circ}$; $(\mathrm{C}-1)-(\mathrm{C}-2)-(\mathrm{N}-3)-(\mathrm{C}-4)=5.11^{\circ}$.

Acknowledgements

We are grateful to both the Ministerio de Educación y Ciencia (Spain, Project PB98-1451) and MIUR (Italy, PRIN 2000) for financial support for this work.

References

1 C. Agami, F. Couty, L. Hamon and O. Venier, J. Org. Chem., 1997, 62, 2106.
2 M. Garcia-Valverde, R. Pedrosa, M. Vicente, S. Garcia-Granda and A. Gutierrez-Rodriguez, Tetrahedron, 1996, 52, 10761.

3 N. Langlois and A. Moro, Eur. J. Org. Chem., 1999, 3483.
4 A. Albeck and G. I. Estreicher, Tetrahedron, 1997, 53, 5325; K. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis, VCH, New York, 1996; Y. Ohfune, Acc. Chem. Res., 1992, 25, 360; M. A. Pericàs, A. Riera and M. Manas, Tetrahedron Lett., 1991, 47, 6931; P. Meffre, L. Vo-Quang and Y. Vo-Quang, Tetrahedron Lett., 1990, 31, 2291; J. R. Luly, G. Bolis and J. F. Dellaria, J. Med. Chem., 1988, 31, 532; Y. Ohfune and N. Kurokawa, J. Am. Chem. Soc., 1986, 108, 6041; F. M. Hauser and S. R. Ellemberg, J. Org. Chem., 1986, 51, 50; H. Rapoport and J. R. Luly, J. Org. Chem., 1985, 50, 4515.
5 C. Agami, F. Couty, G. Evano and H. Mathieu, Tetrahedron, 2000, 56, 367; H. Azuma, S. Tamagaki and K. Ogino, J. Org. Chem., 2000,

65, 3538; C. Hertweck and W. Boland, J. Org. Chem., 1999, 64, 4426; O. Thum, C. Hertweck, H. Simon and W. Bolan, Synthesis, 1999, 2145; C. Agami, F. Amiot, F. Couty, L. Dechoux, C. Kaminsky and O. Venier, Tetrahedron: Asymmetry, 1998, 9, 3955; A. Bernardi, S. Cardani, C. Scolastico and R. Villa, Tetrahedron, 1990, 46, 1987.

6 J. M. Jordà-Gregori, M. E. Gonzàlez-Rosende, P. Cava-Montesinos, J. Sepùlveda-Arques, R. Galeazzi and M. Orena, Tetrahedron: Asymmetry, 2000, 11, 3769; J. M. Jordà-Gregori, M. E. GonzàlezRosende, J. Sepùlveda-Arques, R. Galeazzi and M. Orena, Tetrahedron: Asymmetry, 1999, 10, 1135.
7 P. Garner and J. M. Park, Org. Synth., 1998, Coll. Vol. IX, 300; A. Dondoni and D. Perrone, Synthesis, 1997, 527; A. McKillop, R. J. K. Taylor, R. J. Watson and N. Lewis, Synthesis, 1994, 31; P. Garner and J. M. Park, J. Org. Chem., 1987, 52, 2361.

8 P. L. Beaulieu, J.-S. Duceppe and C. Johnson, J. Org. Chem., 1991, 56, 4196.
9 Oxiranyl derivatives $\mathbf{5 a}$ and $\mathbf{5 b}$ were previously obtained by means of dimethylsulfonium methylide epoxidation: see: J. W. Moore and F. A. Luzzio, Tetrahedron Lett., 1995, 36, 6599.

10 Diastereoselective peracid-mediated epoxidations of allylic carbamates have already been reported: see D. B. Berkowitz and M. L. Pedersen, J. Org. Chem., 1995, 60, 5368; A. Jenmalm, W. Berts, K. Luthman, I. Csoreg and U. Hacksell, J. Org. Chem., 1995, 60, 1026; A. Jenmalm and K. Luthman, Tetrahedron Lett., 1998, 39, 3213 . It is worth noting that the most commonly accepted model for hydroxy- or carbamate-directed epoxidations attributes the threo diastereoselection usually observed to $\mathrm{A}^{(1,3)}$ interactions arising in the erythro transition state.
11 tert-Butyl carbamates $\mathbf{5 a}$ and $\mathbf{5 c}$ reacted faster and with higher yields than their benzyl analogues $\mathbf{5 b}$ and $\mathbf{5 d}$: see C. Vanucci, X. Brusson, V. Verdel, F. Zana, H. Dhimane and G. Lhommet, Tetrahedron Lett., 1995, 36, 2971
12 S. J. Kemp, J. Bao and S. F. Pedersen, J. Org. Chem., 1996, 61, 7162; D. D. Dhavale, L. Gentilucci, M. G. Piazza and C. Trombini, Liebigs Ann. Chem., 1992, 1289; S. Futagawa, T. Inui and T. Shiba, Bull. Chem. Soc. Jpn., 1973, 46, 3308; T. A. Foglia and D. Swern, J. Org. Chem., 1969, 34, 1680.
13 C. Agami and F. Couty, Tetrahedron, 2002, 58, 2701.
14 H. Urabe, Y. Aoyama and F. Sato, Tetrahedron, 1992, 48, 5639; R. A. Farr, A. M. Holland, E. W. Huber, N. P. Peet and P. M. Weintraub, Tetrahedron, 1994, 50, 1033; S. Romeo and D. H. Rich, Tetrahedron Lett., 1993, 34, 7187.
15 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.

16 G. Chang, W. C. Guida and W. C. Still, J. Am. Chem. Soc., 1989, 111, 4379.

17 Hyperchem release 5.2; Chemplus release 2.0, HyperCube Inc., Gainesville, FL, USA.
$18 f_{\mathrm{r}}^{\mathrm{E}}=\Sigma\left(c_{\text {номо }, n}\right)^{2}$, electrophilic atomic frontier electron densities and $f_{\mathrm{r}}^{\mathrm{N}}=\Sigma\left(c_{\mathrm{LUMO}, n}\right)^{2}$, nucleophilic atomic frontier electron densities, are pure numbers. $c_{\text {номо }, n}=$ coefficients of the atomic orbital X_{n} in the HOMO, whereas $c_{\mathrm{LUMO}, n}=$ coefficients of the atomic orbital X_{n} in the LUMO.
19 GAUSSIAN 94, M. J. Frisch, J. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keth, G. A. Petersson, J. A. Montgomery, K. Ragavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburg, PA, USA.
20 C. C. Roothan, Rev. Mod. Phys., 1951, 23, 69 . For a description of the basis set, see: W. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986.

21 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
22 A. D. Becke, Phys. Rev. A, 1988, 38, 3098; B. Mihelich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200.

23 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
24 Similar behaviour has already been reported for epoxy carbamates which react under basic conditions: T. Yamazaki, H. Hiwatsubo and T. Kitazume, Tetrahedron: Asymmetry, 1994, 5, 1823.

25 The NMR spectra are for the α and β conformers. Although the NMR spectra at increased temperatures resulted in single absorptions, we utilised the conformer spectra since further substrate manipulation provided pertinent intermediates which displayed resolved spectra.

[^0]: \dagger Electronic supplementary information (ESI) available: structures of localized transition states. See http://www.rsc.org/suppdata/p1/b2/ b203702e/

